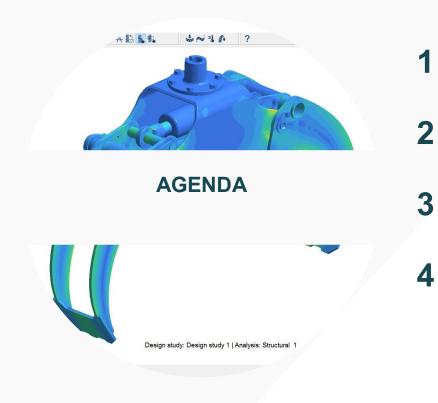


Large Assemblies Simulation Made Easy 20th September 2020 - 14:00 – 15:00 GMT

Something About Me

Wasim Younis


Working at Symetri for over 10 Years as Simulation Specialist

Experience with various Simulation Tools including, MSc, Ansys, Algor and Autodesk Simulation

Authored the Up and Running with Autodesk Inventor/Nastran Simulation books

Traditional & SimSolid workflows

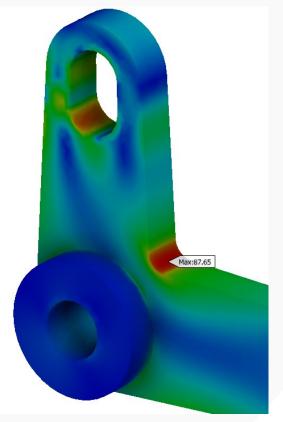
SimSolid Demonstration - Live

SimSolid Results and Accuracy

Question and Answers

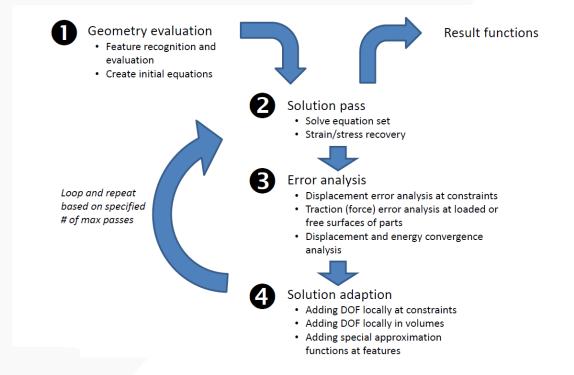
Comparison between Traditional & SimSolid (GEOMETRY SIMPLIFICATION)

Inventor Nastran		SimSolid	
Task	Time	Task	Time
Geometry simplification - remove small features	Mins/ Hours?	Not required - SimSolid works on full fidelity CAD assembly	0
Geometry replacement - convert solids to surfaces, beams, bars, etc.	Hours?	Not applicable - SimSolid handles multi-scale geometry efficiently	0
Geometry clean up - make sure surfaces align, remove gaps and cracks	Hours?	Not required - SimSolid is tolerant of gaps and overlaps	0

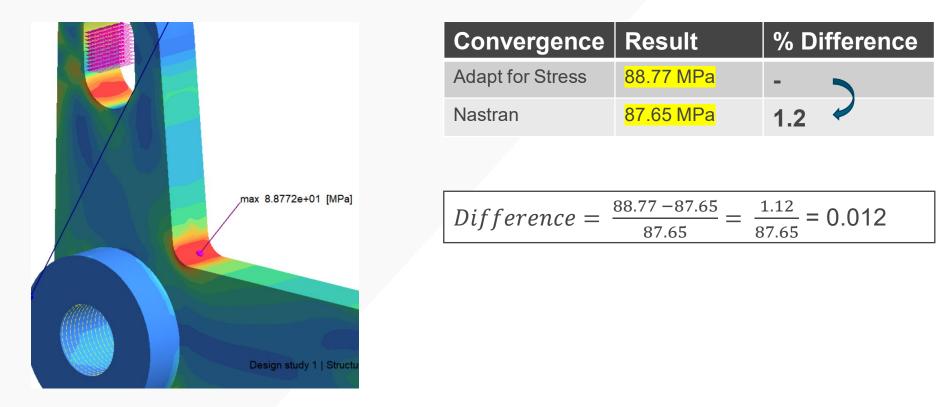


Comparison between Traditional & SimSolid (MESHING AND CONVERGENCE)

Inventor Nastran		SimSolid	
Task	Time	Task	Time
Meshing - sensitive to quality of geometry	Mins/ Hours?	Not applicable – SimSolid does not use a FE mesh	0
Mesh validation – aspect ratio, skew, warp, etc.	Mins?	Not applicable – SimSolid does not use a FE mesh	0
Need to run multiple analyses with different mesh sizes to get stress results convergence	Hours?	Solution Convergence always done.	0
Solution Convergence – not practical for large assemblies	Hours?	Solution Convergence always done.	0

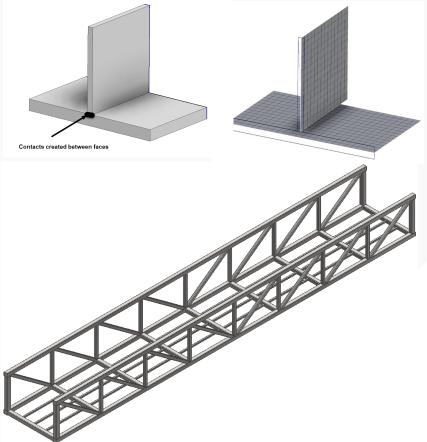

Inventor Nastran Results Convergence

Mesh Size	Result	% Difference
2mm	83.98 MPa	
1mm	81.9 MPa	2 🗲
0.5 local	87.08 MPa	6 🗲
0.25 local	<mark>87.65 MPa</mark>	0.6


SimSolid Workflow – Automatic convergence

DOWNLOAD – SimSolid-technology-overview-whitepaper from Handouts

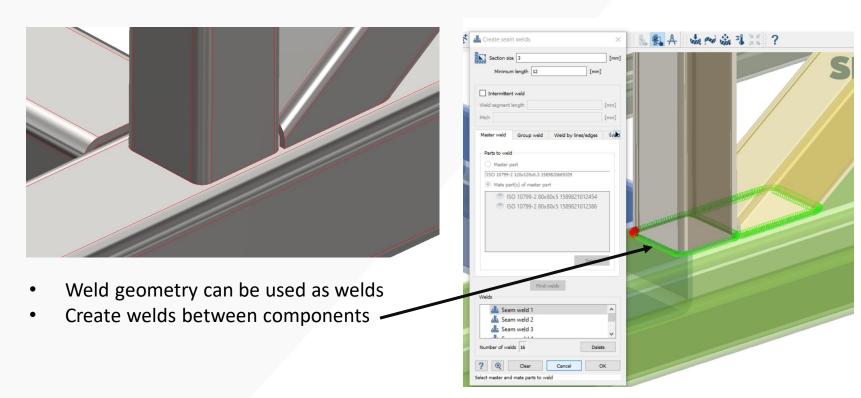
SimSolid results convergence



WELDS

Now lets have a look at Autodesk Solutions Workflow?

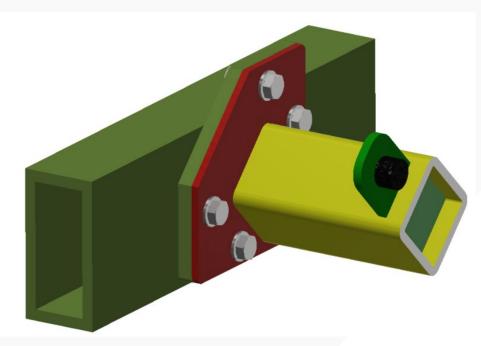
Inventor and Nastran Workflow



Options

- 1. Solid Elements
 - Model Weld geometry
- 2. Shell Elements
 - Mid-surface extraction
 - No weld geometry
 - Surface Model
 - Welds are modelled as surfaces
 - Normally welds not accounted for
- 3. Beam Element
 - Welds not accounted for

SimSolid Workflow



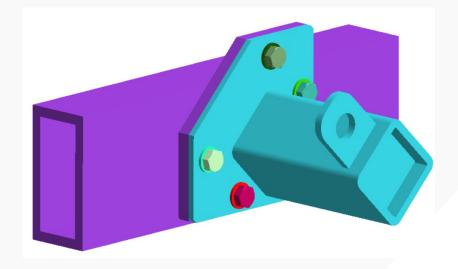
BOLTS Now lets have a look at Autodesk Solutions Workflow?

Inventor and Nastran Workflow

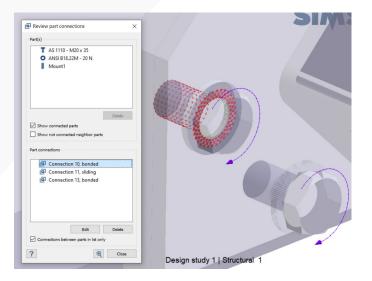
Inventor

1. Cannot analyse bolted connections with preload and will need modify automatic contacts manually.

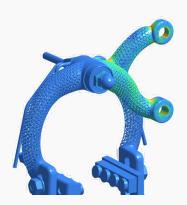
Nastran


- 1. Can analyse bolted connections using beams elements (Classical method).
 - Cannot simulate friction/bolted connection contact behaviour.
- 2. Cannot make reuse of inventor bolted connections (if you want to apply preload).
 - Will need to modify contacts for all bolts.

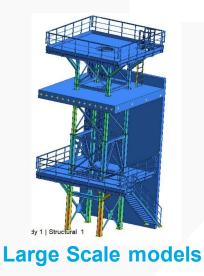
Workflow


- 1. Suppress Bolted Connections
- 2. Split faces to transfer loads from washer/bolt/nuts/threads
- 3. Redefine bolted connections within Nastran

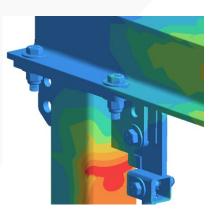
SimSolid Workflow


• You can reuse bolted connections

• Contacts are defined automatically

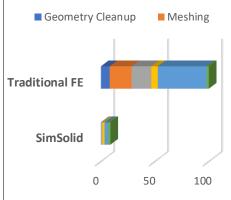


In brief - SimSolid



Complex models

- 3D Printed
- Additive Manufactured
- Lattice structures
- Organic Structures



- Building Structural framework
- Welded Fabrications

Original models

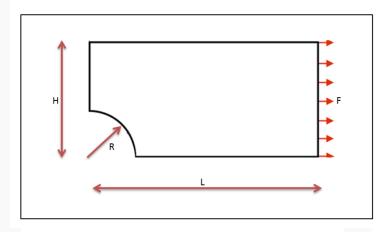
Inventor Bolted Connections

Rapid Results

- Literally within minutes
- Automatic results convergence

SIMSOLID DEMONSTRATIONS - LIVE

SIMSOLID RESULTS AND ACCURACY



Theoretical Example

Plate with Hole

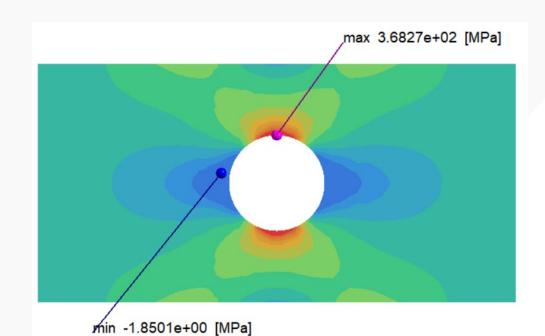
Reference Solution

- o Units are SI.
- o L= 100 mm, H=50 mm, R=20 mm
- Elastic Modulus=2.1e+11 Pa, Poisson's Ratio=0.3
- Thickness = 10mm F = 100 N/mm²

 $\sigma_{max} = k \sigma_{nom}$ with k = 3

$$\sigma_{nom} = F \frac{h}{h-r} = 166,7MPa$$

$$k = 3 - 3.13(\frac{d}{h}) + 3.66(\frac{d}{h})^2 - 1.53(\frac{d}{h})^3 = 2.2357$$


$$\sigma_{max} = 372.7 MPa$$

Further Info on theory

https://www.fracturemechanics.org/hole.html

SimSolid Results

Target Solution	372.7 MPa
SimSolid (Max Principal)	368.3 MPa
% difference	1%

Difference =	372.7 - 368.3	4.4 - 0.0118
Dijjerence -	372.7	372.7 - 0.0118

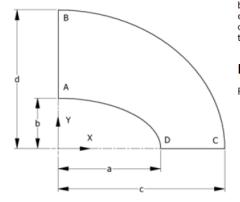
https://www.nafems.org/publications/resource_center/p18/

The Standard NAFEMS Benchmarks

Content

• Elliptic Membrane - Analysis type: Linear elastic

- Cylindrical Shell patch test Analysis type: Linear elastic
- Hemisphere-point loads Analysis type: Linear elastic
- Axisymetric hyperbolic shell, edge loading Analysis type: Linear elastic
- Z-section cantilever Analysis type: Linear elastic
- Skew Plate Normal Pressure Analysis type: Linear elastic plate bending
- Asymmetric cylinder/sphere-pressure Analysis type: Linear elastic asymmetric
- Asymmetric Shell Pressure Analysis type: Linear elastic axisymetric
- Asymmetric branched shell-pressure Analysis type: Linear elastic asymmetric
- Thick plate pressure Analysis type: Linear elastic solid
- Solid cylinder/Taper/Sphere-Temperature Analysis type: Linear elastic solid



NAFEMS Benchmark Test LE1

1. Elliptic plate under tensile

Case description

An elliptic plate with thickness t is supported to a uniform outward pressure P on the outer elliptic cylindrical face, and unloaded at inner face. The plate is symmetric about YZ plane and ZX plane. Determine the tangential edge stress at corner point D on middle plane.

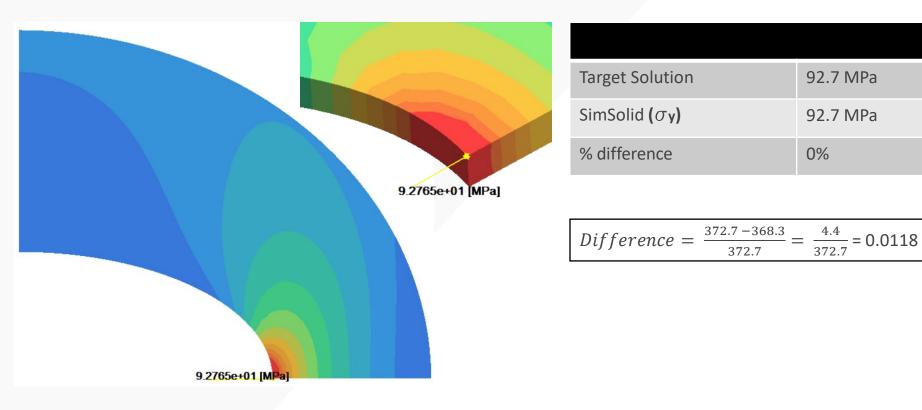
Material data

Steel	
Young's Modulus	2.1e+005 MPa
Poisson's Ratio	0.3
Mass Density	7.85e-006 kg/mm ³
Tensile Yield Strength	207.0 MPa

Dimensions

a = 2000 mm b = 1000 mm c = 3250 mm d = 2750 mm t = 100 mm

Load value


P = 10 MPa

Target Solution

Tangential Stress (σ y) at Point D = 92.7 MPa

SimSolid Results

NAFEMS Benchmark Test LE6

2. Skew plate under normal pressure

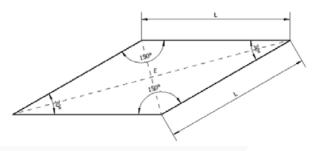
Case description

A rhombic skew plate with thickness t and length L is subjected to a normal pressure P on top face. The plate is simply supported on four side faces. Determine the maximum principle stress at plate center point E on bottom surface.

Material data

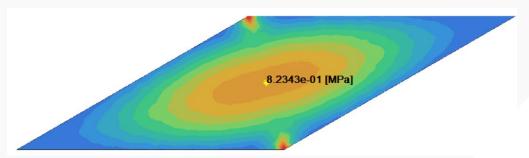
Steel	
Young's Modulus 2.1e+005 MPa	
Poisson's Ratio	0.3
Mass Density	7.85e-006 kg/mm ³
Tensile Yield Strength	207.0 MPa

Maximum Principle Stress at Point E = 0.802 MPa

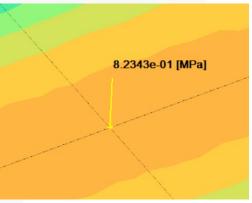

Target Solution

Dimensions

L = 1000 mm t = 10 mm


Load value

P = 0.0007 MPa



SimSolid Results

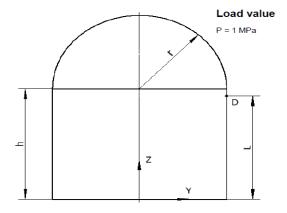
Target Solution	0.802 MPa
SimSolid (Max Principal)	0.82 MPa
% difference	2.2%

Difference =	0.82 -0.802	$\frac{0.018}{0.018} = 0.0224$
Dijjerence –	0.802	$\frac{1}{0.802} = 0.0224$

NAFEMS Benchmark Test LE7

Axisymmetric cylinder/sphere shell under pressure

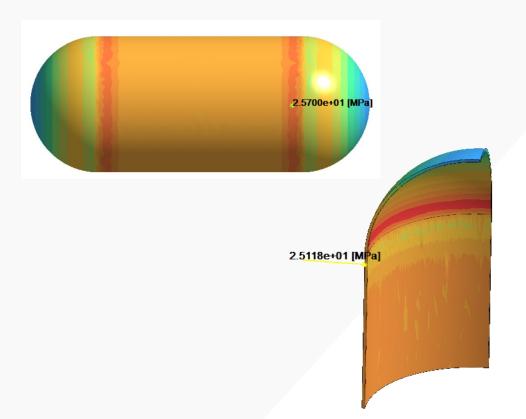
Case description


An axisymmetric shell composed of cylinder and hemisphere with thickness t is subjected to an inner pressure valued P. The shell is symmetric about bottom surface. Determine the axial stress at point D on outer surface.

Material data

Steel		
Young's Modulus	2.1e+005 MPa	
Poisson's Ratio	0.3	
Mass Density	7.85e-006 kg/mm ³	
Tensile Yield Strength	207.0 MPa	

Dimensions



Target Solution

*Axial Stress (σ z) at Point D on outer surface = 25.86 MPa

SimSolid Results

Target Solution	25.86 MPa
SimSolid (σ z)	25.7 MPa
% difference	0.6%

Difference =	25.86 - 25.7	$\frac{0.018}{-0.006}$
Dijjerence –	25.86	$\frac{1}{0.802} = 0.000$

Difference =	25.86 - 25.1 _	$\frac{0.76}{-0.020}$
Dijjerence -	25.86	$\frac{1}{0.802} - 0.029$


SimSolid – Further Verification

More Supporting documents

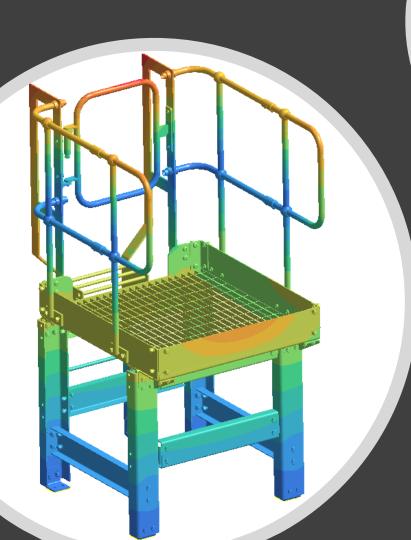
NAFEMS

<u>https://www.symetri.co.uk/media/2237/simsolid-verification-by-nafems.pdf</u>

Altair Verification Manual.

<u>https://web.altair.com/simsolid_validation_guide</u>

DOWNLOAD - SimSolid-validation-manual from Handouts



CAN SIMSOLID HELP YOU

My Contact Details

Email: <u>wasim.younis@symetri.com</u> Mobile Phone: +44 (0) 7980 736255 Office Phone: +44 (0) 1924 232 995

THANKS FOR ATTENDING